
Brief Overview of Future Technologies and
Evaluation Efforts at ORNL

02 October 2006

2

Our Team and Collaborators

� Future Technologies Group
– Sadaf Alam
– Richard Barrett
– Nikhil Bhatia
– Jeff Kuehn
– Collin McCurdy
– Jeremy Meredith
– Ken Roche
– Philip Roth
– Olaf Storaasli
– Jeffrey Vetter
– Weikuan Yu

� Collaborators
– Jacob Barhen
– Pat Worley
– Pratul Agarwal
– Hong Ong
– Core universities (UT, GT, Duke, NCSU,

…)
– SciDAC PERC Team
– DARPA HPCS Team
– DoD HPCMP
– Georgia Tech CSE Dept, CERCS
– Vendors
– Many others…

� Support Scientific Computation
through:
– Performance Analysis

– System Evaluation

– Modeling

– HEC Algorithm/Software R&D

� Experimental Computing Lab (ExCL)
– Examine new/emerging technologies

– FPGAs

– Optical processors

– GPUs

– Array processors

– Multicore processors

– …

� System software: OS, performance
tools, runtime systems

http://www.csm.ornl.gov/ft

3

Motivation

� ITRS predicts that Moore’s Law will be coming to an end in 2012-
2015
– Recent performance gains at chip level are principally derived from
Moore’s Law

� Low sustained performance on important applications causing
HEC community to reconsider system designs
– System balance not tuned for specific HEC applications

� Infrastructure (power, cooling, space) impacting system design
– Tempers performance gains of conventional microprocessors

�Market trends drive vendors to favor issues other than
performance (laptop battery life, etc)
– Culture of “Good-enough computing” -- Economist

4

Motivation (cont)

�New constraints define a new utility function
– Sustained performance, reliability, power, floorspace

�Current architectural trends
– Major vendors moving toward multicore architectures

�Commodity constraints on HEC driving a rebirth of
computer architecture

5

Alternative Architectures Offer Different
Design Points

� GPUs

� FPGAs

�Mulithreaded processors

� Game processors

� Streaming processors

� Physics and AI chips

6

Investigating Diverse Architectures

� Cray X1e, XD1, XT3 (Red Storm)

� IBM BlueGene/L

� IBM SP3, p655

� SGI Altix

� Intel Itanium, Xeon

� IBM POWER5

� IBM Cell

� FPGAs

� GPUs

� Optical processors

� Multithreading

� Array processors, etc.

� Processors-in-memory

� This diversity makes the problem much
more interesting!

Cray X1

IBM Federation

SGI Altix

11

Confidential and Proprietary Information of Lenslet ©2003

Vector Memory

EnLight 256

High Speed
Input

(HSIP)

High Speed
Output

(HSOP)

Vector Register File

Scalar Processing Unit & Control

Vector

Processing

Unit (VPU)

Micro-program
Memory

Fast Matrix Buffer

Host (system)

768Gbps

32Gbps

EMIF EMIF

32Gbps

2Gbps

32Gbps

EnLight
Instruction Set

EnLight
Instruction Set

TI 64xx
Instruction Set

TI 64xx
Instruction Set

32Gbps

Matrix
Memory

EnLight 256 Block Diagram

Vector Matrix

Multiplier.

Optical Core

7

Evaluations are Application Grounded

Data Courtesy P.H.Worley

8

GPUs – current technology with a twist
�What are they?

– Graphics Processing Units
– Most “video cards” contain GPU, RAM

• Usually AGP / PCIe cards
• Up to 512 MB RAM, though most contain less

– Accelerate common 3D graphics operations
• Vertex transformations
• Polygon rasterization

� Architecture
– Vertex and Pixel (Fragment) stages

• implicit parallelism
• differing programmability

– Poor support for scatter ops
– High internal bandwidth
– Example: NV 6800 GT

• 6 vertex pipelines
• 16 fragment pipelines

9

GPUs – Motivation and Outlook

� Motivation

� High end consumer cards:
– Very high speeds

– Low price (~$500)

– Improving faster than CPUs

– Mass market driven (gaming)

� Example:
– 60 GFLOPS, 16 pipes (4/04)

– 200 GFLOPS, 24 pipes (6/05)

– 400 GFLOPS, 48 pipes (1/06)

� Small scale work in scientific apps
– real-time Navier-Stokes
simulations

– particle simulations

� A few recent results vs CPU
– 400x for static imagery geo-
registration

– 60x for video geo-registration

– 100x for convolution
• e.g. sharpen, blur, edge detection

– 26x for hyperspectal covariance

– 17x for discrete cosine transform

– 4x for singular value
decomposition

10

Recent and Ongoing Evaluations
� Cray X1

– P.A. Agarwal, R.A. Alexander et al., “Cray X1 Evaluation Status Report,” ORNL, Oak Ridge, TN,
Technical Report ORNL/TM-2004/13, 2004.

– T.H. Dunigan, Jr., M.R. Fahey et al., “Early Evaluation of the Cray X1,” Proc. ACM/IEEE Conference
High Performance Networking and Computing (SC03), 2003.

– T.H. Dunigan, Jr., J.S. Vetter et al., “Performance Evaluation of the Cray X1 Distributed Shared Memory
Architecture,” IEEE Micro, 25(1):30-40, 2005.

� Cray XD1
– M.R. Fahey, S.R. Alam et al., “Early Evaluation of the Cray XD1,” Proc. Cray User Group Meeting,

2005, pp. 12.
� Cray XT3

– J. S. Vetter, S. R. Alam et al., “Early Evaluation of the Cray XT3 at ORNL,” Proc. Cray User Group
Meeting, 2005, pp. 12.

� SGI Altix

– T.H. Dunigan, Jr., J.S. Vetter, and P.H. Worley, “Performance Evaluation of the SGI Altix 3700,” Proc.
International Conf. Parallel Processing (ICPP), 2005.

� SRC
– M.C. Smith, J.S. Vetter, and X. Liang, “Accelerating Scientific Applications with the SRC-6

Reconfigurable Computer: Methodologies and Analysis,” Proc. Reconfigurable Architectures Workshop
(RAW), 2005.

� Underway
– XD1 FPGAs
– ClearSpeed

– EnLight
– Multicore processors: AMD, Intel
– IBM BlueGene/L

11

Programming Challenges

� Portability
– Unique software stack and

programming model for each
alternative

� Programmer Productivity
� Code Maintenance

� Improving sustained performance is
equivalent to improving the application
to architecture mapping

� Data Management
– Bandwidth, latency challenges

� Cost
– These systems must add measurable

value

C/Fortran

MPI/OpenMP

Matlab/
Python

Assembly/
VHDL

High Performance
High Level Languages

Language
Performance

L
a
n

g
u

a
g

e
E

x
p

re
s
s
iv

e
n

e
s
s

UPC/CAF

SIMD/

DMA

HP
CS

Low

Low

High

High

Source: DARPA HPCS Productivity Team

12

Common Programming Models

� Explicit message passing -- e.g. MPI

� Explicit one sided communication -- e.g. SHMEM.

� Compiler directives -- e.g. OpenMP

� Explicit threading models -- e.g. pthreads, sproc

� Here to stay… for now

� But can we do better?

– I.e. provide code developers with better ways (faster
development, strong performance)

13

Emerging Programming Models

� Partitioned Global Address Space languages.

– Small set of extensions to existing languages enable parallelism
designed to create a global address space, even on machines that
don’t physically have one.

� CoArray Fortran (CAF):

– SPMD

– User must deal with data distribution.

– Fortran2008 inclusion.

� Unified Parallel C (UPC)

– C like model, with data distribution (mostly) hidden from user.

– Random memory access model (NSA driven)

� Alternates: “Global Arrays” (PNNL), etc.

14

Next Generation Programming Models

� DARPA HPCS parallel processing languages (2010).

– independent of architecture program.

� Chapel (Cray, with JPC/CalTech)

– High level multithreaded model

– supports data, task, and nested parallelism.

� X10 (IBM)

– OO, Java-like.

� Fortress (Sun)

– “Java for scientists on peta-scale architectures.” -- Guy Steele (co-author of Java)

� Other players:

– Titanium: Java-based, SPMD (UC Berkeley)

15

Application Impact – Fortran CoArrays

16

SciDAC
Fusion

ORNL has Major Efforts Focusing on Grand Challenge
Scientific Applications

SciDAC
Astrophysics

Genomes
to Life

Nanophase Materials SciDAC Climate

SciDAC
Chemistry

Case Study of a Life Sciences Application

18

Computational Biology using
Molecular Modeling

� Wide community of biologist are interested in
the multi-scale modeling of biomolecules

� Structure – Dynamics – Function

� Spans multiple scales of time and space

� Multi-scale modeling of a real system may require
1 peta-flop/s for an entire year!

� Scaling of existing software packages and
algorithms is limited

Joint work between Sadaf Alam and Comp
Biologist Pratul Agarwal at ORNL.

19

Computer Simulations
(Molecular Dynamics)

�Mathematical (potential) function

– Bond stretching, angle bending, angle torsion and the non-
bond term

– Degree of freedom = 3N-6, where N=number of atoms

– Number of points to sample=M3N-6, M >> 10

– Packages: Amber, GROMACS, GAMESS, LAMMPS, NAMD

∑∑∑ ∑∑
= +=

+

−+−++−+−=

N

i

N

ij ij

ji

ij

ij

ij

ij

angles torsions

n
eqeq

bonds

l

n

r

qq

r

B

r

A
n

V
KllKrV

1 1
612

22])cos[1(
2

)()()(
ε

γφθθθ

20

AMBER Performance Analysis

�ORNL Computational biologists were using AMBER for
their simulations, but its scalability was limited to about
128 processors

�Used several tools to study AMBER’s performance
– MPIP, PAPI, Xprofiler, GPROF

�Modified communication operations to improve scaling

�Identified computational kernels for acceleration with
FPGAs

21

AMBER Profiling on Cray XT3 and IBM
BlueGene/L

RUB (BGL)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

32-vn 64 64-vn 128 128-vn 256 256-vn 512 512-vn

Number of processors

Other

CRD distribute time

Verlet update tim

Shake time

FRC Collect time

Bond/Angle/Dihedra

Calc gb off-diag

Calc gb diag

Communicate gb radi

Calc gb radii

RUB (XT3)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2 4 8 16 32 64 128 256 512 1024

Number of processors

other

CRD distribute time

Verlet update tim

Shake time

FRC Collect time

Bond/Angle/Dihedra

Calc gb off-diag

Calc gb diag

Communicate gb radi

Calc gb radii

XT3

Bottlenecks: Distribute,

Collect and I/O times

Expected to improve

significantly as system matures

BGL

Bottlenecks: Distribute and

collect times

Computation and

communication times can

improve with tool chain

22

Short_ene: mapped to FPGA

Divided and distributed in MPI model

RunMD

Force Shake Update CRD distribute

Non-bond Bond FRC Collect

Generalized Born

GB Computation GB Communication

Amber Control Flow for RUB
(RuBisCO with Generalized Born method)

Main method of Sander

Most expensive on a single node system

Cost increases with

number of processors

23

RUB Scaling

Rubisco with Generalized Born solvation method (ORNLtest3). Note that on BGL only results

from 64, 128, 256, 512 nodes run are shown.

RUB

0

50

100

150

200

250

300

350

400

2 4 8 16 32 64 128 256 512 1024 2048

Number of processors

p
s
e
c
/d

a
y

bgl

xt3

Gen Born=48811s

FRC Collect=2s

CRD Distribute=0

Gen Born=6701s

FRC Collect=52s

CRD Distribute=32s

Gen Born=107s

FRC Collect=61s

CRD Distribute=27s

Gen Born=58s

FRC Collect=139s

CRD Distribute=54s

Gen Born=398s

FRC Collect=142s

CRD Distribute=145s

Will improve as

system software

matures

main

sander

runmd

ewald_force

get_nb_energy

short_ene

do_pmesh_kspace

nonbond_list

force

grad_sumrc

vdinvsqrt

get_nb_list

pack_nb_listfft_backrc fft_forwardrc

fft3dzxyrc

fft2drc

scalar_sumrc_orthog

fft3d0rc

cfftb1 cfftf1 cffti

1

2

4

5

6

7

8

10

11

13

14

9

12

15

17

18

19

20 21

22

passb4

passb2

26

28

24

nb_adjust
29

fastwt_mp_quick332

adjust_imagcrds
34

ephi36

shake45

zero_array
35

map_coords
41

get_grid_weights

31

get_fftdims

174
fft_setup90

196

passf4
27

fill_bspline_139

pub_fft.f

passb2.f

Mapping Amber Kernel to FPGAs

ew_fft.f ew_fft.f

ew_recip.f

ew_direct.f

vec_lib.f

ew_force.f

ew_box.f ew_setup.f

23558000

47116000

1000

1319248

1000

1000

20864000 20864000

128001

1001

1000

1000

1

4096000

1000

1000 3000

2000

8320000

1000

70674000

1000 1056 1000

10001000

1002

1000

3

1

1

1

jac Amber8 benchmark:

List time (% of nonbond) = 4.72 (5.19)

Direct Ewald time = 70.82

Recip Ewald time = 14.76

Total Ewald time (% of nonbond)= 86.23 (94.81)

FFT time (% of Recip) = 4.76 (32.24)

73.14%

3.39%

11.22%

M
apping to

FPG
As

25

AMBER Summary

�Performance analysis identified communication
components as limiting scalability

�Improved by code modifications

�Amber scaling was limited to 128 nodes but now we
have run experiments on 1024 nodes on Bluegene/L and
on 2048 nodes on Cray XT3

�Achieved close to order of a nano-second/day on early
evaluation stage supercomputing systems

�Mapping compute intensive kernel to SRC MapStation
(a reconfigurable computing system)

26

Summary

�We are analyzing HPCS applications to help understand current
and future requirements

� Generating empirical Sequoia traces from large scale experiments
– Developed trace analysis tools to help understand communication scaling

�Developing toolkit that we can distribute that will allow
– Creation of symbolic models that can be evaluated in traditional
environments like MATLAB or Python

– Projections to larger scale

– Sensitivity analysis

– Allows users to model and validate their applications

– Adding capabilities to allow time transformation

27

Acknowledgements and More Info

� This research was sponsored by the Office of Mathematical, Information, and
Computational Sciences, Office of Science, U.S. Department of Energy under Contract
No. DE-AC05-00OR22725 with UT-Batelle, LLC. Accordingly, the U.S. Government
retains a non-exclusive, royalty-free license to publish or reproduce the published form
of this contribution, or allow others to do so, for U.S. Government purposes.

� http://www.csm.ornl.gov/ft

� http://www.csm.ornl.gov/evaluation

� Email: vetter@ornl.gov

